Minimum Penalized ϕ-Divergence Estimation under Model Misspecification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Penalized Likelihood Estimation: Convergence under Incorrect Model

Penalized likelihood method is among the most eeective tools for nonparametric multivari-ate function estimation. Recently, a generic computation-oriented asymptotic theory has been developed in the density estimation setting, and been extended to other settings such as conditional density estimation, regression, and hazard rate estimation, under the assumption that the true function resides in...

متن کامل

Mean Square Error bounds for parameter estimation under model misspecification

In parameter estimation, assumptions about the model are typically considered which allow us to build optimal estimation methods under many statistical senses. However, it is usually the case where such models are inaccurately known or not capturing the complexity of the observed phenomenon. A natural question arises to whether we can find fundamental estimation bounds under model mismatches. T...

متن کامل

Minimum Φ-divergence Estimator and Hierarchical Testing in Loglinear Models

In this paper we consider inference based on very general divergence measures, under assumptions of multinomial sampling and loglinear models. We define the minimum φ-divergence estimator, which is seen to be a generalization of the maximum likelihood estimator. This estimator is then used in a φ-divergence goodness-of-fit statistic, which is the basis of two new statistics for solving the prob...

متن کامل

Minimum Φ-divergence Estimator for Homogeneity in Multinomial Populations∗

A problem which is frequently encountered in practice is that of deciding whether some sets of quantitative data are all derived from the same distribution. In this context consider υ independent random samples X = ( X 1 , ..., X (1) n1∗ )t ,...,X = ( X 1 , ..., X (υ) nυ∗ )t , of sizes n1∗, ..., nυ∗ respectively. The question is now to decide if the samples X, ...,X are all derived from the sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2018

ISSN: 1099-4300

DOI: 10.3390/e20050329